Journal of Organometallic Chemistry, 288 (1985) C25–C29 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

SYNTHESES WITH η^{5} -C₅H₅V(CO)₃THF: GENERATION, AND SUBSTITUTION REACTIONS. FIRST OBSERVATION OF ⁵¹V—^{117,119}Sn COUPLING

MARTIN HOCH and DIETER REHDER*

Institut für Anorganische Chemie der Universität, D-2 Hamburg 13, Martin-Luther-King-Platz 6 (F.R.G.)

(Received February 2nd, 1985)

Summary

The complex CpV(CO)₃THF has been prepared in THF solution (i) photochemically from CpV(CO)₄, and (ii) from [CpV(H)(CO)₃]⁻/[Ph₃C]⁺ at low temperatures. THF is replaced by [CpV(H)(CO)₃]⁻ to form [{CpV(CO)₃}₂- μ -H]⁻, and by various ligands L with C, η^2 -C=C, Sn, N, O, S, Se or Te functionality to yield CpV(CO)₃L and *cis*-[CpV(CO)₂LL] (LL = bipy, *o*-phen, tolane). The δ (⁵¹V) values range over ca. 1400 ppm and allow the assignment of distinct coordination modes for ambidentate ligands. The temperature gradient is ca. +1.2 ppm/deg. For [CpV(SnCl₃)(CO)₃]⁻ (δ -1340 ppm rel. to VOCl₃), ¹J(⁵¹V-^{117,119}Sn) is 900 Hz. The isotope effect on introducing ¹²CO for ¹³CO in CpV(CO)₄ is -0.48(2) ppm; ¹J(⁵¹V-¹³C) 107 Hz.

Various derivatives of CpV(CO)₄ of the general formula CpV(CO)_{4-n}L_n have been prepared by (i) photo-induced CO-substitution in CpV(CO)₄ in the presence of L (n = 1: L = SnCl₃⁻ and GeCl₃⁻ [1], E^VR₃ [2,3], CNR [4]; n = 2: L = μ -SMe [5], SnCl₃⁻ [1], alkyne [6,7], vinylketene [8]), or a precursor L' of L (L = diene; L' = cyclo-C₃Ph₃H [9], 2-oxonin [10], (ii) from Cp₂V₂(CO)₅ and L (L = CN⁻ and E^VR₃ [11], alkyne and cyclobutadiene [12]), or (iii) from [CpV(CO)₃]²⁻ (or [CpV(H)(CO)₃]⁻) and L (n = 1: L = Hal⁻ [13,14], CH₃CN and CH₃⁻ [14], E^{IV}R₃⁻ [15,16]). Special synthetic routes such as the preparation of CpV(CO)₃CH(NH₂) from [CpV(CO)₃]²⁻ and [Me₂NCHCl]Cl [17], the preparation of [CpV(CN)(CO)₃]⁻ by action of K[N(SiMe₃)₂] on CpV(CO)₄ [18], the synthesis of CpV(CO)₃PEt₃ by the reduction of CpVCl₂(PEt₃)₂ with Zn/Al under 1 bar of CO [19], or the formation of CpV(CO)_{4-n}(CS)_n (n = 1, 2) in the system CpV(CO)₄/PPh₃/CS₂ [20] have also been noted. None of these previously described procedures is, however, generally applicable, and this prompted us to

0022-328X/85/\$03.30 © 1985 Elsevier Sequoia S.A.

develop an alternative route to the complexes $CpV(CO)_3L$ (and, in a few cases, $CpV(CO)_2LL$) by the labile ligand method employing the still only partly characterized $CpV(CO)_3THF$.

This compound was suggested by Barnett et al. [21] and by Caulton et al. [22] to be an intermediate in the photo-induced generation of $CpV(CO)_3PR_3$ and $Cp_2V_2(CO)_4PR_3$ from $CpV(CO)_4$ in the presence of phosphine ligands. Caulton also reported the IR spectrum of the (thermolabile) THF complex. The lability of $CpV(CO)_3THF$ contrasts with the stability of $CpNb(CO)_3THF$, at room temperature [23].

We have now obtained the vanadium complex by photolysis of THF solutions of CpV(CO)₄ at 190 to 230 K, or by abstraction of H⁻ from [Et₄N][CpV(H)(CO)₃] suspended along with [Ph₃C][BF₄] in THF at 195 K. The emerald green solutions of $CpV(CO)_3$ THF, which can be prepared in concentrations up to 0.05 M, decompose above ca. 250 K to give $CpV(CO)_4$ and $Cp_2V_2(CO)_5$, suggesting that the electron-deficient fragment $CpV(CO)_3$ is formed as an intermediate, and that the photo-generation of $Cp_2V_2(CO)_5$ from $CpV(CO)_4$ in THF described by Herrmann et al. [24] proceeds via $CpV(CO)_3$ THF. $CpV(CO)_3$ may either form $Cp_2V_2(CO)_5$ by loss of one CO, or recombine with CO to $CpV(CO)_4$. The formation of $CpV(CO)_2$ intermediates can be excluded since decomposition of $CpV(CO)_3$ THF in the presence of $Ph_2PCH_2PPh_2$ (dppm) yields $CpV(CO)_3$ dppm only. If $CpV(CO)_3$ THF is decomposed in the presence of ¹³CO, $CpV(CO)_3$ (¹³CO) and other species of the general composition $CpV(CO)_{4-n}(^{13}CO)_n$ are obtained, which can be distinguished by their ⁵¹V NMR pattern. The doublet for $CpV(CO)_3({}^{13}CO)({}^{1}J({}^{51}V-{}^{13}C)107 \text{ Hz})$ is shifted to high field (low frequency) relative to $CpV(CO)_4$. This isotope effect (-0.48(2) ppm) is of the same order of magnitude as that observed for $[V(CO)_5(^{13}CO)]^{-}$ [25]. Characteristic IR frequencies for CpV(CO)₃THF are ν (CO) 1952 and 1850 cm⁻¹, which corresponds to the pattern reported by Caulton [22] and to that for $CpNb(CO)_{3}THF$ noted by Herrmann [23]. The vanadium chemical shift relative to VOCl₃ at 231 K is $-217 \text{ ppm} (\text{compare } \text{CpV}(\text{CO})_4: -1534, \text{Cp}_2\text{V}_2(\text{CO})_5: -1664, [\text{CpV}(\text{H})(\text{CO})_3]^-:$ -1730 ppm; all at 300 K in THF).

The replacement of THF by L can be carried out by the following methods (eq. 1 to 4):

$$[CpV(H)(CO)_3]^- + [Ph_3C]^+ - \frac{THF, 195 K}{CpV(CO)_3THF} - \frac{L, 195 K}{CpV(CO)_3L}$$
 (1)

$$[CpV(H)(CO)_{3}]^{-} + [Ph_{3}C]^{+} + L \xrightarrow{195 \text{ K}} CpV(CO)_{3}L$$
(2)

$$CpV(CO)_4 \xrightarrow{THF, h\nu, 230 \text{ K}} CpV(CO)_3 THF \xrightarrow{L, 230 \text{ K}} CpV(CO)_3 L$$
 (3)

$$CpV(CO)_4 + L \xrightarrow{h\nu, 237 \text{ K}} CpV(CO)_3 L$$
(4)

In the case where L is a bidentate nitrogen ligand NN (1,10-phenanthroline, 2,2'bipyridyl), the disubstituted complexes cis-[CpV(CO)₂NN] are formed, which are reminiscent of the Schiff base complex CpV(CO)₂NC₆H₄(2-CH=NHCHMePh) [26]. C₂Ph₂ gives CpV(CO)₂- η^2 -C₂Ph₂. The results are summarized in Table 1.

TABLE 1

L	δ(⁵¹ V) ^a (ppm)	Temperature (K)	Spectrometer ^C	Colour ^b	Preparation ^d
<i>n</i> = 1					
Group VIIa	-578				
Br					
Group VIa					
THF	-217 (-136)		WL	green	2,4
SPh ₂	-843 (-763)		WL	brown	1,3
SH(i-Pr)	-906 (-826)		WL	brown	1,3
$SC(NH_2)_2$		300	PFT	brown-red	1,3
SC(Me)NH ₂	-947	300	PFT	brown-red	1,3
S(O)Me ₂ (DMSO)	-977	300	PFT	red-brown	1-4
SePh ₂	-906 (-836)		WL	red-brown	1,3
rePh ₂	-1145	300	WL	red-brown	1,3
Group Va					
2-NH ₂ -py	-426	300	PFT	brown-red	1,3
NH ₂ Ph	-496	300	PFT	brownish	1,3
PhN=CHPh	-491	300	PFT	red	1,3
4-CN-py	-492	300	PFT	red-brown	1,3
pyridine	-519	300	PFT	red	1-4
L-Methylimidazole	-650	300	PFT	red	1,3
midazole	-659	300	PFT	red	1,3
NCS	-699	300	PFT	red	3
NCMe	-719	300	PFT	red	1-4
NCPh	-732	300	PFT	red	1-4
phthalodinitrile	-740	300	PFT	red	2,4
PPh ₃	-1316 [157]				
Ph,PCH,PPh,	-1340 [195]				
PMe ₂ Ph	-1396 [171]				
P(OMe),	-1496 [311]				
PF ₃	-1567 [434]				
AsPh ₃	-1259				
SbPh ₃	-1430				
BiPh ₂ R	-1260				
	-1200				
Group IVa					
CN ⁻	-1400				
C≡CPh [−]	-1414	300	PFT	brown	1,3
CNCy	-1401				
³ CO	-1535 [107]	300	PFT	orange	е
SnCl ₃	-1340 [900]	300	PFT	red-brown	1,3
SnPh ₃	-2054				
Other					
H	-1730 [20]				
	-1129	300	PFT	green	1,3
1 = 2					
n − 2 PhC≡CPh	600	300	PFT	brown	1,3
o-phenanthroline	-21	300	WL	violet	1,8
1,10-bipyridyl	-63	300	WL	violet	1,3
	-00			10101	1,0

$^{\rm 51}{\rm V}$ Chemical shifts and selected experimental details for ${\rm CpV}({\rm CO})_{4_n}{\rm L}_n$ complexes

^a Relative to VOCl₃ neat. In parentheses: δ (⁵¹V) extrapolated to 300 K, using a temperature gradient of +1.17 ppm/deg (which is the gradient found for CpV(CO)₃py in the temperature range of 229 to 302 K). ^b In THF solution (except for L = DMSO, NCMe, NCPh and py, where the ligand itself has been employed as the solvent). ^c WL = Bruker SWL 3-100 wideline spectrometer, PFT = Bruker WH-90 PFT spectrometer. ^d 1, 2, 3 and 4 refer to eq. 1-4 see text. ^e Prepared by UV irradiation of a THF solution of CpV(CO)₄, saturated with ¹³CO, at 195 K, warming up to 250 K and vigorous shaking. For comparison, some data on known complexes (L = PR₃, AsR₃, SbR₃, BiR₃ [2,3,27,32], CNCy [4], SnPh₃ [15], Br [13] and CN [27,32] are included.

The complexes $CpV(CO)_{3}L$ are thermolabile $(L = SPh_2, SePh_2, SH(i-Pr))$ or stable at room temperature as long as they are solvent-stabilized. Except for L = NCS⁻, TePh₂ and CNCy, the compounds cannot be isolated as solids even at low temperatures. In solution, they exhibit the characteristic CO stretching patterns, i.e. a sharp band of weak to medium intensity around 1950 cm⁻¹ (A'(cis)) and a broad, very strong absorption at ca. 1860 cm⁻¹ (A'(trans) + E), which sometimes shows an asymmetry to higher wave numbers (A'(trans)). The $\nu(CO)$ bands of the complexes $CpV(CO)_2NN$, which can be isolated as solids, are at 1870 and 1808 cm⁻¹ (THF solution), those of $CpV(CO)_2 \cdot \eta^2 \cdot C_2Ph_2$ at 1992 and 1914 cm⁻¹, which are comparable to the values of $\nu(CO)$ reported by Nesmeyanov for the tolane complex in CS₂ solution [28].

The $\delta({}^{51}V)$ values of the complexes show a differentiation which resembles the trends for the ${}^{51}V$ shieldings observed in the systems $[V(CO)_5L]^-$ [29], $[V(NO)_2L_4]^+$ [30] and $CpV(NO)_2L$ [31]: increasing CO substitution decreases the shielding of the metal nucleus ($CpV(CO)_4$ (-1534) > $CpV(CO)_3L$ (-217 to ca. -1400) > $CpV(CO)_2NN$ (-21 to -63 ppm)) except where L is a very strong π acceptor (PF₃) or an extremely "soft" ligand (H⁻, SnR₃⁻). Within the class of $CpV(CO)_3L$ compounds, there are specific ranges for $\delta({}^{51}V)$ which can be allocated to distinct coordinating ligand functions. Thus, shielding decreases in the series H⁻ \simeq {Sn} > {Sb} > {C} \simeq {P} > {As} > TePh₂ > η^2 -PhC \equiv CPh > {S} > SePh₂ > {N} > THF.

Coordination of DMSO via S is evidenced by its shift value, which is close to those for other S-ligands, and by the $\nu(SO)$ of 1235 cm^{-1} (the $\nu(SO)$ of uncoordinated DMSO is 1055 cm^{-1} ; compare also $[V(CO)_5 \text{DMSO}]^-$: 1288 cm^{-1} [29]). Thiurea (-854) and thioacetamide (-947 ppm) also ligate through sulfur, while SCN⁻ (-699 ppm) appears to prefer N-coordination. 2-NH₂-py, according to its δ (⁵¹V) shift, coordinates via NH₂, 4-NC-py via the pyridine-N (as do these pyridine derivatives in the anionic complexes $[V(CO)_5 py']^-$).

The ⁵¹V NMR signals are singlets, broadened by the effective quadrupole relaxation (nuclear spin of ⁵¹V 7/2, quadrupole moment -0.05×10^{-28} m²). An exception is the complex [CpV(SnCl₃)(CO)₃]⁻ for which, along with the central line (85% intensity) there is a flanking doublet (15% of the overall intensity) due to ¹J(⁵¹V—^{117,119}Sn) coupling. The couplings to the ¹¹⁷Sn and ¹¹⁹Sn nuclei, respectively, are not resolved because of the very similar magnetogyric ratios of the two magnetically active tin nuclei and the line broadening caused by the ⁵¹V nucleus. The experimental overall coupling is 900 Hz, which can be related to $J(V-^{117}Sn)$ 880 and $J(V-^{119}Sn)$ 920 Hz and a half-width of the resonance lines of 190 Hz. The coupling constant is larger by a factor of 4 to 5 than those commonly observed between ⁵¹V and ³¹P in CpV(CO)₃PR₃ complexes [27,32] (cf. also Table 1).

Experimental

All operations were carried out under N_2 and in absolute, O_2 -free solvents. [Et₄N][CpV(H)(CO)₃] was prepared from Na_2 [CpV(CO)₃] and [Et₄N]Cl in CH₃CN as described previously [34]. The ligands SCN⁻ and SnCl₃⁻ were employed as the tetraethylammonium, PPhC=C⁻ as the potassium salts. In a typical experiment, 165 mg (0.5 mmol) of $[\text{Et}_4\text{N}]$ [CpV(H)(CO)₃] were treated with 60 ml of THF and cooled to 195 K. To this suspension/solution, 5 ml of a CHCl₃ solution of 165 mg (0.5 mmol) of $[\text{Ph}_3\text{C}]$ [BF₄] were added dropwise during 10 min. Upon stirring for ca. 1 h, a dark green solution of CpV(CO)₃THF was formed. This solution was treated at 195 K with a 5-fold molar excess of L (dissolved in a few ml of THF if solid at room temperature) and, with continuous stirring, warmed to 243 K. The formation of CpV(CO)₃L was complete after ca. 10 h.

Alternatively, $CpV(CO)_3$ THF can be obtained by external irradiation (high pressure mercury lamp) for 10 min of a solution of 200 mg of $CpV(CO)_4$ in 50 ml THF (saturation) contained in a borosilicates vessel at ca. 200 K. During the irradiation, a weak N₂ stream is passed through the solution. For the synthesis of [$\{CpV(CO)_3\}_2 - \mu$ -H]⁻, equimolar amounts of $CpV(CO)_3$ THF and [Et_4N] [$CpV(H)(CO)_3$] were used.

References

- 1 T. Kruck and W. Molls, Z. Anorg. Allgem. Chem., 420 (1976) 158.
- 2 R. Talay and D. Rehder, Chem. Ber., 111 (1978) 1978.
- 3 R. Borowski, D. Rehder and K. von Deuten, J. Organomet. Chem., 220 (1981) 45.
- 4 N. Coville, personal communication,
- 5 F.Y. Petillon, J.L. Le Quere and J.E. Guerchais, Inorg. Chim. Acta, 37 (1979) L453.
- 6 R. Tsumura and N. Hagihara, Bull. Chem. Soc. Japan, 38 (1965) 1901.
- 7 D.F. Foust and M.D. Rausch, J. Organomet. Chem., 239 (1982) 321.
- 8 R.B. King and C.D. Hoff, J. Organomet. Chem., 225 (1982) 245.
- 9 K.-J. Jens and E. Weiss, Chem. Ber., 117 (1984) 2469.
- 10 M.D. Rausch and A.V. Grossi, J. Chem. Soc., Chem. Commun., (1978) 401.
- 11 E.O. Fischer and R.J.J. Schneider, Chem. Ber., 103 (1970) 11.
- 12 L.N. Lewis and K.G. Caulton, J. Organomet. Chem., 252 (1983) 57.
- 13 R. Talay and D. Rehder, Inorg. Chim. Acta, 77 (1983) L175.
- 14 R.J. Kinney, W.D. Jones and R.G. Bergman, J. Am. Chem. Soc., 100 (1978) 7902.
- 15 R. Talay and D. Rehder, J. Organomet. Chem., 262 (1984) 25.
- 16 K.M. Pfahl and J.E. Ellis, Organometallics, 3 (1984) 230; J.E. Ellis, R.A. Faltynek and S.C. Hentges, J. Organomet. Chem., 120 (1976) 389.
- 17 A.J. Hawthorn, M.F. Lappert and K. Turner, J. Chem. Soc. Dalton Trans., (1978) 348.
- 18 D. Rehder, Z. Naturforsch. B, 31 (1976) 273.
- 19 J. Nieman, J.H. Teuben, J.C. Huffman and K.G. Caulton, J. Organomet. Chem., 255 (1983) 193.
- 20 S.S. Rajan, Ind. J. Chem. A, 15 (1977) 520.
- 21 L.N. Lewis and K.G. Caulton, Inorg. Chem., 19 (1980) 1840.
- 22 G. Alway and K.W. Barnett, Inorg. Chem., 19 (1980) 779.
- 23 W.A. Herrmann, W. Kalcher, H. Biersack, I. Bernal and M. Creswick, Chem. Ber., 114 (1981) 3558.
- 24 W.A. Herrmann and J. Plank, Chem. Ber., 112 (1979) 392.
- 25 K. Ihmels and D. Rehder, Inorg. Chim. Acta, 96 (1985) L69.
- 26 H. Brunner and W.A. Herrmann, Z. Naturforsch. B, 28 (1973) 606.
- 27 D. Rehder, H.-Ch. Bechthold, A. Kececi, H. Schmidt and M. Siewing, Z. Naturforsch. B, 37 (1982) 631.
- 28 A.N. Nesmeyanov, K.N. Anisimov, N.E. Kolobova and A.A. Pasynskii, Dokl. Chem., 182 (1968) 789.
- 29 K. Ihmels and D. Rehder, Chem. Ber., in press; Organometallics, in press.
- 30 F. Näumann and D. Rehder, Z. Naturforsch. B, 39 (1984) 1647 and 1654.
- 31 M. Herberhold and H. Trampisch, Z. Naturforsch. B, 37 (1982) 614.
- 32 D. Rehder, Magn. Reson. Rev., 9 (1984) 125.
- 33 D. Wenke, K. Ihmels, P. Oltmanns and D. Rehder, Inorg. Chim. Acta, in press.
- 34 U. Puttfarcken and D. Rehder, J. Organomet. Chem., 185 (1980) 219.